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   چکیده

 که غیرهمسانگرد غیرهایزنبرگی هامیلتونین با سیستم مقاله این در
 میدان تقریب از استفاده با است، یههمسا ترین نزدیک تبادل داراي

 مدل که معادلاتی کلی حالت در ابتدا است. شده بررسی میانگین
 از استفاده با کنند می توصیف را غیرهمسانگرد غیرهایزنبرگی

 سپس و کنیم می محاسبه حقیقی پارامتر در همدوس هاي حالت
 براي را اسپین موج چهارقطبی و دوقطبی هاي شاخه که معادلاتی

 توصیف (خلاء) پایه حالت از کوچک خطی هاي برانگیختگی
 خطی معادلات از استفاده با نهایت در آوریم. می دست به کنند، می

   کنیم. می محاسبه چهارقطبی شاخه براي سالیتونی جواب شده،
  
  کلیدي گانواژ

  چهارقطبی. هاي برانگیختگی غیرهایزنبرگی، غیرهمسانگرد،
 

 
 
 
 
 
 
 
 
 

 
Abstract  
We discuss system with non-isotropic non-
Heisenberg Hamiltonian with nearest neighbor 
exchange within a mean field approximation 
process. We drive equations describing non-
Heisenberg non-isotropic model using coherent 
states in real parameters in general form and then 
obtain dispersion equations of spin wave of dipole 
and quadrupole branches for a small linear 
excitation from the ground state. In final, soliton 
solution for quadrupole branches for these linear 
equations obtained. 
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Introduction 
During the past decade study of nonlinear 
behavior of magnetic crystals has been 
attracted large attention, specially it 
accompanies with the progress in some 
other fields such as development of theory 
of nonlinear differential equation, achieving 
new laboratory results and also potential 
applications in other branches of science 
and technology. [1, 2] 

Particles with spin � ≥ 1 are more 
interesting among the other nano particles 
[3, 4]. This is because of existing of 
complexity in their behavior due to their 
multipole dynamic spin excitations. In such 
systems, the number of necessary 
parameters for complete description of 
macroscopic properties increases up to 4S, 
that S stands for magnitude of system spin. 

Also it worthwhile, the process of 
achieving classical spin equations and 
dynamic multipoles is based on coherent 
states that are obtained in ��(2� + 1) 
group. [5,6] 

We consider unitary anisotropic 
Hamiltonian as form of:[7] 

 �� = −� ∑��⃗��⃗��� + ����������               (1) 
 
Which, ����, ���� and ���� are spin operators 

in lattice � and � is anisotropic coefficient. 
This is Hamiltonian of one dimensional 
ferromagnetic spin chain observed in 
compositions like CSNiF3.[8] 

In this paper the goal is to obtain 
classical equation for stated Hamiltonian 
and finding the answer of spin wave for 
small linear excitations upper than the 
ground state. Coherent states issued nearest 
approximation to classical state i.e. pseudo 
classical, because they minimize 
uncertainty principles. For this reason, in 
section 2, coherent states for spin � =1developed that are the same as coherent 
states in ��(3) group. To obtain classical 
Hamiltonian, we need average values of 
spin operator; so in section 3, these values 
and classical Hamiltonian equation are 
derived. In the following, Hamiltonian 
equation computed in this section is 

substituted in classical equations of motion 
resulted from using Feynman path integral 
on coherent states, and then we acquire spin 
wave equations and dispersion equations of 
dipole and quadupole branches for small 
linear excitation above the ground state, and 
finally we calculate soliton answers of 
linearized equations. 

 
Coherent states in ��(�) group 
Coherent states are special quantum states 
that their dynamic is very similar to 
behavior of their classical system. The kind 
of coherent state that is used in a problem 
depends on symmetry of existent operators. 
With considering existent symmetry in 
operators of Hamiltonian (1), coherent 
states in ��(3) group is used for accurate 
description and considering all multipole 
excitations. In this group, ground state 
considered as (1.0.0)� and its single-site 
coherent state is written as:[9,10] 

 |�〉 = ��(�. �)���������������|0〉      (2) 
 
In above equation, ��(�. �) is Wigner 

function for spin � = 1 and two angles � 
and � determine alignment of classical spin 
vector. Angle � determines direction of 
quadruple excitation around the spin vector. 
Parameter g specifies change of length of 
average value of quadruple excitation and 
also of magnitude of spin vector. 
Lagrangian can be obtained by use of 
Feynman path integral for declared 
coherent states as [11]: 

 � = ���2�(������ + ��) − �(�, �, �)  
                                                           (3) 
 
Where �� = � ���  and H is classical 

energy of system obtained by averaging 
Hamiltonian (1) on coherent states (2). Two 
other terms appear when acquiring 
Lagrangian of spin system. The first is 
Kinetic term that has Berry phase 
characteristics issued from quantum 
interference of Instanton paths and has 
important role in quantum phenomenons 
such as spin tunneling and the second is 
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boundary term that depends on boundary 
values of path. [12] Both of term have no 
role in classical dynamic of spin excitations 
and so are not considered here. 

 
3.Classical Hamiltonian and equations in ��(3) group 
Average spin values in ��(3) group 

written as[11]: 
 �� = ������2�����  �� = �������2�����  � � = ���2�����                                (4) 
 
By averaging Hamiltonian (1) and using 

(4), the continuous limit of classical 
Hamiltonian obtained as: 

 ��� = −� ∫ ���� �����2� + �� (����� +���2����2������) − ���� �(��� +��������)����2� + 4�������2���          (5) 
 
To obtain classical equation of motion, 

the above classical Hamiltonian is 
substituted in motion equations resulted 
from Lagrangian equation: 

 1�� �� = �����(���2� − ���2����2�)+ ������2�(�������+ �������) 
 ��� �� = �� ���2����2����2� −���������2����� 
 ��� �� = − �� ���2������ 

 ��� �� = {4���2� − �(���2�(���4� −���2����4�) + ��������2�)} +����2� �8��� − 2��� + �� ���(−3 +���2�) − �������� + 4������2�� ���   (6) 
  
These equations completely describe 

nonlinear dynamics of Hamiltonian of 
problem up to quadrupole excitation. 
Solutions of these equations are magnetic 
solitons. These equations result Landau-
Lifshitz equation if quadrupole excitations 

ignored(� = 0). So these equations are 
more general in comparison with landau-
Lifshitz and have more degree of freedom. 
It’s noteworthy that solution of these 
equations has different range of solitons.  

 For small linear excitation from ground 
stste, classical equations of motion change 
to: 

 
 ��� �� = �(����� + �����)� +����������� 
 ��� �� = −����������� 

 ��� �� = − �� � 

 ��� �� = −2 �2����� + �������� � +4�����������                                            (7) 
 
To obtain dispersion equations, 

functions � . � . � and � are considered as 
plane waves and their substitution in 
linearized equations result in dispersion 
equation for spin wave near the ground 
state: 

 
 ��� = �������������(�(����� +�����) + ����������) 
 ��� = ���� � ������ + 2�����(����� +1)�                                                            (8) 
From the above equation, it is obvious 

that both dipole and quadruple branches of 
unitary Hamiltonian are dispersive in 
presence of linear excitations. If the unitary 
anisotropy coefficient is zero, (� = 0), we 
have only dipole dispersion branch and 
there is no quadrupole dispersion. In other 
word, quadruple dispersion branch obtained 
only when there is square spin term, 
(��������), in Hamiltonian. 

To compute soliton answers of equations 
(7), we define variable � such as � = � −��. In this case above equations convert to 
below nonlinear equations. 

 
 ������ + ����(1 + �����)� �� +(��������)����� = 0 
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 ����� ��� = −2 �2����� + �������� � +4�����������                                            (9) 
 
The first equation is third order 

differential equation. So change of dipole 
moment in Hamiltonian (1) is not of the 
form of soliton. Solution of this equation 
has the following forms: 

 � =
���� ⎝⎜

⎛(� − ��) � �����������
� ����������(�������)���/�

⎠⎟
⎞

         

                                                           (10) 
 
In this answer, if unitary anisotropy 

coefficient is limited, there is no any change 
in general form of this, but the magnitude 
of frequency oscillation changed. 

The second equation is nonlinear Klein-
Gordon equation and shows change of 
average value of quadruple excitation that 
its solution is of the form of Hylomorphic 
solitons [13]. These solitons are like Q-ball 
solitons. The reason of this name is because 
of they cause matter have appropriate form. 
Also these solitons are of the kind of non 
topologic ones because their boundary 
values in ground and infinity are the same 
from the topological point of view. If 
rewrite nonlinear Klein-Gordon equation 
(9) as: 

 
 ��� = ���� + ��                             (11) 
Where 
 � = −����������� � = ���(���������)������                            (12) 
 
As we seen in relations (9), (11) and 

(12), if we remove the unitary anisotropy 
coefficient �, the equations are well defined 
only when � = 0. The concept of this 
sentence is that the quadruple excitation in 
this equation existed only when there is the 
anisotropy term in Hamiltonian or in other 
word quadratic spin term in Hamiltonian.  

 

Numerical solution of (11) is plotted in 
figure (1). In this computation we consider � = 10� and � = 10��.  

 

 
Figure 1. Numerical solution (quadruple 

excitation) of relation (11) is Helomorphic 
soliton. 

 
Analytical solution of above nonlinear 

Klein-Gordon equation is the following 
form: 

 �(�. �)= � sinh �(�
− ��)�� −��(4���2�� + �)�����(�� + ������������� 

                                                           (13) 
Where � is constant. 
 
So, with considering Single-Ion 

anisotropy in Hamiltonian (1) in SU(3) 
group, Quadrupole excitations are released 
as solitary waves that named Hylomorphic 
soliton and the most property of them is 
spherical symmetries. This result show the 
importance of Single-Ion anisotropy in 
physical system like the Hamiltoniam (1). 

 
Conclusion 
In this paper, we study semi-classic theory 
for spin systems with spin � = 1 that 
contain anisotropic exchange terms. it is 
shown that for anisotropic ferromagnet, 
value of average quadruple torque is not 
constant (�� ≠ 0) and its dynamic contains 
rotational term around classical spin vector (�� ≠ 0) and another dynamics that relates 
to change of length of quadruple torque. 
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There are no such excitations in regular 
magnets and their dynamics is achieved by 
use of average value of Heisenberg spin 
Hamiltonian. Also it is shown that soliton 

solutions are of the kind of non topologic 
Hilomorphic solitons for quadruple 
excitations. 
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