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Abstract: We discuss system with non-isotropic non-Heisenberg Hamiltonian with nearest neighbor exchange within a mean 

field approximation process. We derive equations describing non-Heisenberg non-isotropic model using coherent states in real 

parameters and then obtain dispersion equations of spin wave of dipole and quadrupole branches for a small linear excitations 

from the ground state. Finally, the soliton solution for quadrupole branches for these linear equations is obtained. 
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1. Introduction 

During the past decade study of nonlinear behavior of 

magnetic crystals has been attracted large attention, specially 

it accompany with the progress in some other fields such as 

development of theory of nonlinear differential equations, 

achieving new laboratory results and also potential 

applications in other fields of science and technology [1 – 3]. 

Particles with spin 1≥S  are more interesting among the 

other nano particles [4, 5]. This is because of existing of 

complexity in their behavior due to their multipole dynamic 

spin excitations. In such systems, the number of necessary 

parameters for complete description of macroscopic 

properties increases up to 4S, S stands for magnitude of system 

spin. 

Also it is worthwhile thst the process of achieving classical 

spin equations and dynamic multipoles is based on coherent 

states that are obtained in )12( +SSU  group [6, 7]. 

We consider unitary anisotropic Hamiltonian in the form 

�� = −�∑��	
�	
�� + ���
���
��,            (1) 

where ��
�, ��
� and ��
� are spin operators in the lattice �, and 

� is the anisotropic coefficient. This is Hamiltonian of one 

dimensional ferromagnetic spin chain observed in 

compositions like CSNiF3 [8]. 

In this paper the goal is to obtain classical equation for 

stated Hamiltonian and finding the answer on question about 

spin wave for small linear excitations upper than the ground 

state. Coherent states issued nearest approximation to classical 

state i.e. pseudo classical, because they minimize uncertainty 

principles. For this reason, in the Section 2, coherent states for 

spin � = 1 are developed that are the same as coherent states 

in ��(3) group. To obtain classical Hamiltonian, we need 

average values of spin operator; so in the Section 3, these 

values and classical Hamiltonian equation are derived. In the 

Section 4, Hamiltonian equation computed in previous section 

is substituted in classical equation of motion resulted from 

using Feynman path integral on coherent states, and then we 

acquire spin wave equations and dispersion equations of 

dipole and quadupole branches for small linear excitation 

above the ground state, and finally we calculate soliton 

solutions of linearized equations. 

2. Coherent States in ��(�) Group 

Coherent states are special quantum states, dynamic of 

which is very similar to behavior of their classical systems. 

The kind of coherent state that is used in a problem depends on 

the existent operators’ symmetry. With considering existent 

symmetry in operators of Hamiltonian (1), coherent states in 

��(3)	 group is used for accurate description and considering 

all multipole excitations. In this group, ground state 

considered as (1,0,0)  and its single-site coherent state is 

written as [9, 10]: 

|"〉 = $�(%, &)'(
)*�+',
-./01|0〉.           (2) 

In above equation, $�(%, &)  is the Wigner function for 
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spin � = 1 and two angles % and & determine alignment of 

classical spin vector. Angle 2  determines the direction of 

quadruple torque around the spin vector. Parameter g specifies 

change of length of average value of quadruple torque and also 

of magnitude of spin vector. Lagrangian can be obtained by 

use of Feynman path integral for declared coherent states as: 

3 = cos28(cos%&9 + 29) − �(%, &, 2),      (3) 

where :9 = ;/;=  and H is classical energy of system 

obtained by averaging Hamiltonian (1) on coherent states (2). 

Two other terms appear when acquiring Lagrangian of a spin 

system. The first is kinetic term that has Berry phase 

characteristics issued from quantum interference of Instanton 

paths and has important role in quantum phenomena such as 

spin tunneling and the second is boundary term that depends 

on boundary values of path [11]. Both of term have no role in 

classical dynamic of spin excitations and so are not considered 

here. 

3. Classical Hamiltonian and Equations 

in ��(�) Group 

Average spin values in ��(3) group are written as: 

�� = '
>cos28sin%, 

�( = '(
>cos28sin%, 

�� = cos28cos%.                 (4) 

By averaging Hamiltonian (1) and using relations (4), the 

continuous limit of the obtained classical Hamiltonian is: 

�AB = −� C D�
EF
Gcos,28 + H

, (cos
,% + sin28cos22sin,%) −

EFI
, �(%�

, + &�,sin,%)cos,28 + 48�,sin,28�K.  (5) 

To obtain the classical equation of motion, the above 

classical Hamiltonian is substituted in motion equations 

resulted from Lagrangian: 

1
LM

&9 = �cos%(sec28 − cos22tan28)
+ QM,cos28(%��csc% + &�,cos%), 

�
RF
%9 = H

, sin2%sin22tan28 − QM,&��cos28sin%, 

�
RF
89 = − H

, sin22sin
,%, 

�
RF
29 = S4cos28 − �(cos22(cot48 − cos2%csc48) +
cos,%sec28)T + Gcos28 U88�, − 2%�, + �

,&�
,(−3 +

cos2%) − %��cot%W + 48��sin28K QM,.    (6) 

These equations completely describe nonlinear dynamics of 

Hamiltonian of problem up to quadrupole excitation. Their 

solutions are magnetic solitons. These equations result 

Landau–Lifshitz equation if quadrupole excitations are 

ignored	(8 = 0). So they are more general in comparison with 

Landau–Lifshitz equation and have more degree of freedom. 

It’s noteworthy to say that solution of these equations has 

different range of solitons. 

For the case of easy axis anisotropy with � < 0, to find the 

smallest value of Hamiltonian (1) vary it respect to all 

parameters. The minimum of Hamiltonian is reached at 

% = Y
, , 2 =

Y
, 	and	sin28M =

|H|[ , where	|�| < 4, this points is 

the ground state of the system. 

For small linear excitation from ground state, classical 

equations of motion change to: 

�RF&9 = �(sec8M + tan8M)% + QM,cos8M%��, 

�RF %9 = −QM,&��cos8M, 

�RF 89 = − H, 2, 

�RF 29 = −2U2sin8M + H,_`a-FW8 + 48��sin8MQM,.      (7) 

To obtain dispersion equations, functions %, &, 2  and 8 

are considered as plane waves and their substitution in 

linearized equations result in dispersion equation for spin 

wave near the ground state: 

L�, = LM,b,QM,cosgM(�(sec8M + tan8M) + b,QM,cos8M), 
L,, = LM,� U HAde-F + 2sin8M(b,QM, + 1)W.   (8) 

From the above equation, it is obvious that both dipole and 

quadruple branches of unitary Hamiltonian are dispersive in 

presence of linear excitations. If the unitary anisotropy 

coefficient is zero (� = 0), we have only dipole dispersion 

branch and there is no quadruple dispersion. In other words, 

quadruple dispersion branch is obtained only when there is 

square spin term, (��
���
�), in Hamiltonian. 

To compute soliton solutions of equations (7), we define 

variable f such as f = : − g=. In this case above equations 

convert to below nonlinear equations: 

UhIRFI + �QM,(1 + sin8M)W %i + (QM,cos8M),%iii = 0, 

(,HRF 899 = −2U2sin8M + H,_`a-FW8 + 4QM,8��sin8M. (9) 

The first equation is third order differential equation. So 

change of dipole moment in Hamiltonian (1) is not of the 

soliton form. Solution of this equation has the following 

forms: 

% = jsin
k
lm(: − g=) n �EFI_`a-F�IopIqFI�HEFI(��ars-F)t

u�/,
v
wx. (10) 

In this solution, if unitary anisotropy coefficient is limited, 

there is no any change in its general form, but the magnitude 
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of frequency oscillation changes. 

The second equation is nonlinear Klein–Gordon equation 

and shows change of average value of quadruple excitation 

that its solution is of the hylomorphic solitons form. These 

solitons are like of Q-ball solitons. The reason of this name is 

because they cause matter, which have the appropriate form. 

Also these solitons are of non-topologic kind because their 

boundary values in ground and infinity are the same from the 

topological point of view. 

Let’s rewrite nonlinear Klein–Gordon equation (9) as: 

899 = y8�� + z8,              (11) 

where 

y = −�LMQM,sin8M, 

z � HRF�[ars,-F�H�
{_`e-F .               (12) 

As we seen in relations (9), (11) and (12), if we remove the 

unitary anisotropy coefficient � , the equations are well 

defined only when 8 � 0. The concept of this sentence is that 

the quadruple excitation in this equation existed only when 

there is the anisotropy term in Hamiltonian or in other words 

quadratic spin term in Hamiltonian. 

Numerical solution of (11) is plotted in Figure 1. In this 

computation we consider α =10
5
 and β =10

10
. 

 

Figure 1. Numerical solution (quadruple excitation) of relation (11) is a 

Helomorphic soliton. 

Analytical solution of above nonlinear Klein–Gordon 

equation is the following form: 

8�:, =� � j sinh |�: � g=�}~ (RF�[ars,-F�H�
_`a-F�hI�HRFEFIars-F~�,   (13) 

where j is the constant. 

4. Conclusion 

In this paper, we study semi-classical theory for spin 

systems with spin 1=S  that contain anisotropic exchange 

terms. It is shown that for anisotropic ferromagnet, value of 

average quadruple torque is not constant )0( ≠tg  and its 

dynamic contains rotational term around classical spin vector 

)0( ≠tγ  and another dynamics that relates to change of length 

of quadruple torque. There are no such excitations in regular 

magnets and their dynamics are achieved by use of average 

value of Heisenberg spin Hamiltonian. Also it is shown that 

soliton solutions are of the kind of non-topologic hilomorphic 

solitons for quadruple excitations. 
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